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1.  Introduction and Summary 

The object of this paper is to develop statistical signal detection 

techniques for a wide class of stochastic processes with stationary 

independent symmetric increments. That is, the basic premise in this 

situation is that the increments from a regularly-sampled continuous 

parameter process are i.i.d. with a continuous distribution satisfying: 

F(x) + F(-x) = 1 for all x.  Taking symmetry about zero is no loss of 

generality, since one can initially take symmetry amount some constant 

c and then one can re-define the process to be symmetric about zero. 

Let {Z(t), t >_ 0} be a stochastic process of this type, then the 

realized data from signal detection viewpoint will be of the following 

two types: 

(a) Historical Data: ^=   (X^, X^, ..., X ), where X = 

Z(rA) - Z((r - 1)A), Z(0) = 0 and  A > 0. 

(b) Two-sample Data:  qc,Y) = (X^, X^, ..., X^; Y^, Y^,   ..., YJ, 
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X.'s  and Y.'s  are defined similar to  (a)  above with resuect to 

stochastic processes {Z(t), t >_ 0 with law X^^    and  {Z'(t), t >^ 0 

with law a\j,}. 

The family of all stochastic processes with stationary independent 

symmetric increments, in the sequel, will be denoted by  9,(SISI) . Three 

types of detection problems will be treated. These are outlined below 

in terms of pure noise (PN) and noise plus signal  (N + S); see Bell 

(1964a). 

(i) Goodness-of-fit Detectors. Here, we detect the problem of 

PN: tf^ = 4^ e f2(SISI) against N + S: cT ^ o^   where t^     is 

completely specified. 

(ii) Class-fit-Detectors. This involves detecting PN: <^ z  f2(SISI) 

versus N + S: X k  f^(SISI). 

(iii) Two-sample Detectors. This problem is to detect 

PN: <^^ =  ^2  C'^i ^ J^(SISl), i = 1, 2) against N + S: °(^f  '^2' 

where again e\       and a\ ^    are in t^(SISI). 

Let a denote the probability that the detector will produce a false 

alarm (PFA); and denote by B the probability that the detector will 

produce a false dismissal  (PFD). The detectors proposed in this in- 

vestigation are optimal in the sense that for a fixed PFA  a, the 

procedure has minimum PFD,  3- The organization of the paper is as 

follows. 

In Section 2 some examples of laws from the family  f^(SISI) are 

given. Section 3 starts with some basic terminology used. Also, dis- 



cussion about minimal sufficient statistics (M-S-S), maximal statistical 

noise  (M-S-N)  and a non-parametric property for the underlying detection 

statistics is given.  In part 4 relevant distributions, permutations 

and alternative statistics with some examples are discussed. Section 5 

treats goodness-of-fit detectors.  In the next section 6 class-fit 

detectors are developed. The two-sample detectors are dealt with in 

section 7.  The final part concludes with point estimation and confidence 

bounds for F in J^CSISI) which are quite useful in detection methodology. 

For various structural results and properties in the case of 

stochastic processes belonging to the class f^(SISI), the relevant 

• references are Doob (1953), Feller (1966) and Basawa and Rao (1980). A 

different but related concept of symmetry is investigated by Bell and Haller 

' (1969), Bell and Smith (1969, 1972), and Ahmad (1974). Wiener-Levy pro- 

cesses which are closely connected with processes of the class f^(SISI) 

are treated in Bell et al. (1980). TTie detection techniques developed 

in this paper carry over to discrete time as well as continuous time 

parameter stochastic processes in the family  Q(SISI). 

2.  Some Examples of Laws from fl (SISI) 

Example 2.1.  (Wiener). Let {Z(t): t >_ 0}  be a Gaussian process 

satisfying (a) Z(0) = 0;  (b) E(Z(t)) = 0,  (c) Cov (Z(s), Z(t)) = a 

2 
min (s,t). Then for any A > 0, Y , ..., Y^ are i.i.d.  N(0, a  A), 

when Y. = Z(jA) - Z([j - 1]A). That is the process has SISI's, or 

J^ e  Q(SISI) 
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Example 2.2.  (Compound Poisson).  Let Y^, Y„, ..., Y , ... be i.i.d. 

U(-9,e);  {N(t) : t ^ 0} be a H-P-P  (Homogeneous Poisson Process) 
Nft) 

with parameter  X; and Z(t) =  I Y.. Then {Z(t): t >_ 0} is a 
1  - 

Compound Poisson Process.  Further, for each A > 0, Y^, ..., Y  are 

i.i.d.  F*, with F*(x) + F*(-x) = 1 for all x, when Y. = Z(jA) - 

Z([j - 1]A). 

Example 2.3.  (Random Walk).  Let W , W , ..., W , ... be i.i.d.  double 

exponential, D - E(X), i.e.,  ^(x) = ^ e' 1^'; and Z(r) = ^ W . 

Then {Z(r): r = 1, 2, ...} has a law Y  in ^(SISI). 

Example 2.4.  (Symmetric Stable Distributions). A distribution F(x) is 

said to be strongly unimodal, if and only if, the convolution of G 

with any unimodal distribution is unimodal (normal and Wishart distributions 

are strongly unimodal).  If F and C are symmetric about zero and 

unimodal distributions, then so is their convolution F*G.  Furthermore, 

all stable distributions (as defined below) with characteristic functions 

given by exp (-|t| ), 0<a_<2 are unimodal.  Let X, X^, X^, ... denote 

mutually independent random variables with a common distribution H 

and set X* = X, + X^ + ... + X . The distribution H is stable if for 
n   1   2        n 

d 
each n there exist constants b > 0 and c„ such that X* = b X + c n n n   n    n 

and H is not concentrated at the origin. Consequently, if X^, X , ... 

are i.i.d. are stable and symmetric about zero, then {Z(t) = X* 

r = 1, 2, ...} has a law c^ in fi(SISI). 



Remark 2.1. Stable distributions are natural generatizations of the 

1/a normal family.  Only the norming constants b^^ = n    are possible; 

a is called the characteristic exponent of the distribution H(*). 

All stable distributions are continuous.  For many applications and 

other results for stable distributions see Feller (1966). 

3. Sufficient Statistics and the Non-parametric Property 

In developing the statistics to be used it is convenient to delineate 

two types of distribution-free-ness. 

Definition 3.1.  (a) A statistic T(-) is NPDF wrt a family  Q' 

of stochastic-process laws, if there exists a cpf Q(*) such that 

P{TCC) < t\<X} =  Q(t)  for all t, and for all Jf e n\ 

(b) A family  { T*(-; c^): ^TIJ* e f^'> is PDF wrt  a family  fi', 

if there exists a cpf Q* such that 

P T*(Y;^) 1 t|c^} = Q*(t) for all t and for all Jf e ^'. 

Example 5.1.  Consider Example 2.1 with fi' = {WLP: a > 0} and data 
4     9-1 

Y = CY,, ..., Y ).  Let T(Y) = j [ I y?] [ I yh        and 

9 
T*(Y, ^) = a'^ [ ly'^.]^~^.    Then T(-) is NPDF  wrt  ^', with 

Q = F(4; 5), and T*(-,.) is PDF wrt ^' with Q* = Xg- 

The interest here is in the wider family ^ (SISI). In order to con- 

struct the PDF and NPDF statistics, one needs the minimal sufficient 

statistic  (M-S-S) and its complementary statistic, the maximal 



statistical noise, M-S-N, to be defined below. 

Notation.  Let X = (X , ..., X ) be the vector of increments,  i.e., 

X = Z(jA) - Z([j - 1]A);  let S (X) = (|x|(l), ..., |x|Cn)), the vector 

of ordered absolute values; let N,(X) = (e, R*), where 

c =  [e(X ), e(X-), ..., e (X )], and R* = [R(IxJ), ..., R(!x^|)]; 

and 6^(X) = [Sj(X), \(y^)]. 

Theorem 3.1.  (a) S,(X)  is the M-S-S for n(SISI), and it is comnlete. 

(b) S,(X), £ and R* are mutually independent 

(c) &,{•)     is 1-1 a.e.     ' 

Definition 3.2.  Let S(X) be a M-S-S for fi';  6(X) = [S(X), N(X)] 

be 1-1 a.e., and N(X) be independent of S(X). Then 

(a) 6(*) is called the BDT (basic data transformation) for ^' 

and 

(b) N(X)  is called the M-S-N (maximal statistical noise) for  Q'. 
^ 

Th eorem 5.2.  (a)  6j(X) = [Sj(X), N^OC)]  is the BDT for r!(SISI); 

(b) N-(X) = [e, R*] is M-S-N for  f^'. 

The general rule for employing these statistics in signal dection 

is as follows. 

Rule of Thumb.  (A) For situations involving a specific law,  (e.g., 

PN: o( =  o(f.),    employ a PDF statistic based on the M-S-S, 
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(B) For situations involving the underlying structure of the family 

e.g.,  PN: <rS e fi'  or PN: X■,   = ^2'     ei"Ploy an NPDF statistic based 

on the M-S-N. 

This overall principle will be followed in the sequel. However, in 

order to make efficient use of this principle, one should consider several 

alternate versions of the M-S-S and the M-S-N. 

4.  Distributions, Permutations and Alternate Statistics. 

The only versions of M-S-S and M-S-N, known to the authors, are 

those related to maximal invariants or iDermutation statistics. S^(X), 
1 % 

given above, is an appropriate maximal invariant, as is N,(X). 
1 % 

The set of permutations of interest here is the Sign-Time grout), 

S*. 
n 

Definition 4.1.  (a) S* = {all permutations of coordinates of X and   n % 

changes of signs of coordinates.} ' 

(b)    S*(X)  = {Y(X):    Y e S* }   is the    S*    orbit of    X. 
x\. t\j r\j n n f\j 

Example 4.1.  Let n = 2, and x = (-5.6, 0.9) then, its orbit is 

S;(x) = {-tCx): Y e S;} 

= {(-5.6, 0.9), (-5.6, -0.9), (5.6, 0.9), (5.6, -0.9), 

(0.9, -5.6), (-0.9, -5.6), (0.9, 5.6), (-0.9, 5.6)}. 

Theorem 4.1.  (a) S* is a group of order (n!)(2 ) 

(b) S* is a wreath product group. 

(c) The orbit, S*(X,) contains  (n!)(2 ) points for almost 
n <v 



every X . 

Based on these permutations, one can now give useful additional 

versions of the M-S-S and the M-S-N. 

Theorem 4.2.  ^ (X), the S* orbit o^ Definition 4.1,  is a M-S-S. 
    n 'XJ        n 

In order to construct the M-S-N based on S*.  one needs the following 
n '^ 

definitions 

Definition 4.2. (a) A (measurable, real-valued) function h (•) is 

called a B-Pitman function wrt a set, S', of permutations, and a 

family    Q',     of stochastic-process   laws   if 

P{h(X)   = h(yiX))\i^}  = 0,     unless     X = Y(X), 

for all  permutations     y    in    S'     and  all   ^   in    Q'. 

(ii)     Let    R(h(X))   =    )    e {h(X)   - h(Y(X))   ,    where 
£/■■ YeS' '^ '^ - 

e(u)   =  1    if    u >^ 0;    =0,     if    u < 0.     Tlien,   if    h(-) 

is  a    B-Pitman  function wrt    S'     and      Q',     RCh(-))     is  called a    B-Pitman 

statistic wrt    S'     and    Q'. 

Example 4.2.     Let    n =  3,     and    h(x   ,   x„,  x  )   = x.   +  2x_  +  3x   .     Then, 

h(-)     is  a    B-Pitman function wrt    S*    and    f?(SISI).     Further,    RCh(-)) 

is  a    B-Pitman  function wrt    S*    and    n(SISI). 

One can prove immediately 

Theorem 4..3.     (Maximal Statistical  Noise Theorem)     (a)     If    h(-)     is 



a B-Pitman function wrt S* and  f2(SISI),  then R(h(-))  is (a version 

of)  M-S-N. 

(b)  T*  is  NPDF wrt fi(SISI)  iff there exist a (measurable) 

function W(-)  and B-Pitman function h* such that T*(X) = R(h*(X)). 

Corollary 4.1.  (a) There are an infinite number of (mutually equivalent) 

versions of M-S-N. 

(b) N (X),  of Section 3,  can be epxressed in terms of at least 
1 % 

one B-Pitman statistic; and 

(c) If o^ e J^(SISI),  P{R(h(X)) = k} = [ (n!) (2") ]'"^ for 

1 < k < (n!)(2"). 

At this  point one has  the following formulations  of basic statistical 

structure 

M-S-S 

(i)     S-(X) = [|X|(1),   ...,   |x|(n)] 

(ii)     S;(X) = {Y(X):     Y e S*} 

(iii)     S,(X) = G*(«)     (of Def.   4.3 below) 
3 % n 

M-'S-N 

(i)    Nj(X) =   [e(Xp,   ...,  e(Xj;     R(|xJ),   ....   R(|x^|)] 

(ii)    R (X) = R(h(X)),    where    h(')     is a    B-Pitman function wrt    S* 
h   Oi "X/ Tl 

and f^(SISI). 
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In order to make use of some standard nonparametric procedures, one 

introduces the entities below. 

Definition 4.3.  Let  !•(•)  satisfy,  F(x) + r(-x) = 1  for all  x. 

(a) G„(')  is defined by G„(z) =0,  for z < 0,  and =2F(z) - 1 
r r 

for z > 0. 

1 " 
(b) G*(-)  is defined by G*(z) = n   I     (z - |x!Ci)). 

One proves easily 

Theorem 4.4.  S,(X) = G*(0  is a M-S-S. 
 ——-— i f\,    n 

Further, it follows from Birnbaum and Rubin (1954),  and Bell (1964a, b) , 

that 

Theorem 4.5 .  (PDF' Theorem)  Kach statistic of the form 

(|)[Gp(|x|(l)), ..., Gp(|x|(n))]  or r(.r^^(-)) 

is  PDF wrt f^(SISI). 

This theorem will be used in constructing all procedures for one of 

the signal detection models of the sequel. 

One final statistical tool will be introduced in this section.  It is 

a slight generalization of the method of Durbin (1961) and Bell and 

Doksum (1965), and should be employed primarily to avoid certain distri- 

bution problems.' 

Let 6(X) = [S(X), N(X)],  where 6('), S(X),  and N(X)  are res- 

pectively, the BDT, M-S-S and M-S-N of a family  Q'  of stochastic 
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process laws. Let X be data governed by a law ff\ (usually unknown) 

in fi' , and let Y be generated bv a law a\ (known) in P.' and 

be independent of X. 

Definition 4.4.  (a)  Y is called E-S-N  (Extraneous statistical noise). 

(b) Y' = 6"^[S(x), N(X)]  is called R-S-N (randomized statistical 

noise). 

Example 4.3.  Let X = (X^ , . . ., X^,.) be the increments of data governed 

by a law  c<„ in Q(SISI).  Let Y = (Y., ..., Y_^) be the increments 

of a Wiener process (See Section 2) with o  = 1/4.  Then X , ..., X 

are i.i.d.  F(-)> unknown; and Y , ..., Y   are i.i.d.  $.  One 

simple version of the M-S-S is S (X) = (|x|(l), ..., |x|(25),  in 

which case one chooses N,(X) = [e(X,), ..., e(X );  R(|X |), ..., 

R(|X_J)], and, then 6(X) = [S, (X), N, (X)].  One then, forms 
ZD f\j i   % 1   % 

6'^(|Y|(1),   ...,   1Y|(25);   e(Xj),   ...,   e(X^^)-     H\X^\),   ...,   R(IX25!))   = 

(Y'     ...,  Y'   ),    where    Y!   =   [2  e  (X.)   -   1] | Y.| (R( |X. |)) .     This means  each 

X    is  replaced by that    Y,    which has  the same absolute-value rank and 

same sign.     Then,  it can be proved that    Y'     ..., Y'       are    i.i.d. 

N(0,1). 

These ideas are formalized in the theorem below. 

Theorem 4.6-  (Randomized Noise Theorem).  Let X = (X , ..., X )  and 
■ ■— ■ ■■■'- ••■—■— ■■ ■■-■'-■■'■ f\j X 11 

Y = (Y^, ..., Y ) be independent, and be generated by laws ^    and a\*, 

respectively in  0'.  Let 5(-). S(X)  and N(X), be respectively, the 

BDT, M-S-S and M-S-N for 9.'.     If Y' = (Y'  ..., Y') = 
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S'-" [S(Y), N(X)],  then Y' = Y '^^ cJf * e Q' 

Thus, the distribution of the P.-S-N,  Y, has been imposed on the 

data while the M-S-N of the data is preserved. 

Now, one is in a position to treat the pertinent inference problems. 

5.  Goodness-of-fit Detectors 

The situation to be treated here is 

PN:  o^ = «5^ e.  fi(SISI) vs N + S  c^ / <^Q. 

One notes that the law 0\       and the sampling spacing  A,  uniquely 

determine the common distribution F , of the independent symmetric 

increments X, = Z(jA) - Z([j-1]A),  for j = 1, 2, .... n, where 

Z(0) = 0. 

Example 5.1.  (a)  In Example 2.1, oC^  is such that F^ = N(0, a A). 

(b)  In Example 2.3,  if A = 3,  then F  is that distribution -Punction 

2  -3 
with characteristic function (()(u) = (1 + t /X)  .  In Example 2.2.,  F^ 

is the distribution function with characteristic function 

())(u) = exp {-AA[1 - 4)*(u)]}, with (()*(u) = {ud)~    sin uG. 

For a given constant sampling spacing  A, one can rephrase the 

detection problem as 

PN*:  F = F e Q* vs N + S:  F / F^ 

where F (x) + F (-x) = 1 for all x,  i.e.,  F  exhibits symmetry wrt 0. 

This being the case, one should base the decision rule on the M-S-S: 
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S-C^) = [|x|Cl), .... |x|(n)],  and a PDF statistic using the cpf 

G  ,  where  C (x) = 2F(x) - 1,  x > 0. 
0 

Hence (by Bell (1964b) and Birnbaum and Rubin (1954)),one should 

consider decisions based on statistics of the form 'Hf^p C|x|(l)), ..., 
0 

G„ (|x|(n))]. 

Decision Rule 5.1.  Decide N + S iff sun G*(z) - G„ (z) > d' 
z 0 

-1    " 
where    G*(z)   = n        ^    r.   (z  -   | X] (i)),    and    d'   = d'(a,n)     chosen so as 

"        j = l 
to achieve FAR,a. 

Decision Rule 5.2.  Decide N + S iff    [G*(z) - G^ (z)]^dG^ (z) > w* _  J   n      FQ      FQ 

w*(a,n). 

Of course, several other goodness-of-fit statistics could have been 

used.  [See, e.g. Bell (1964b), Model I J. 

If one knows that the signal has the effect of yielding a specified 

distribution, H for ^* = (XJ, . . . , X*), where X| = |x|(j), then 

one would prefer a decision rule of the form below.  [The problem here 

would be PN: <p^ =   o^Q    vs  N + S: <?( =    i^^]. 

k 
Decision Rule 5.3.  Decide N + S iff h(x*  . . . , x*) > C* TT g„  (x*) , 
 — 1      ^     1 ^0  -^ 

where C* = C(a,k) and g(-)  and h(-) are the appropriate densities. 

These three decision rules will be illustrated with data in the 

appendix. 
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6.  Clciss-F'i t Detectors . 

Here one has tlie detection nroblem PN: o\   e PCSISI)  vs  M + S: 

cK \  f2(STSI).  Since this problem does not concern a specific value of 

the parameter (or law), one is led to NPJir statistics and M-S-N.  One 

useful version Js N^fX) = [£(Xp, ...,e(X^);  R(|xJ), .... P(|x^I)]. 

n 
De cision Rule 6.1.  Decide N + S  iff T*fX) = T r (X.) > c  or  < c , 
 '  n %        t' 1    —    1 —    2 

wlicre     c .   =  c . (a.n) 
.) .1 

This,  of course,   is  a  Sign  Detector or a  Throslihold  Detector.     It 

makes   no use  of the  rank   vector. 

In order  to make  use of all   of the comnonents  o+'    S,(X),     one 
1  % 

introduces  the Wilcoxon     1-sample statistic. 

n 
Decision  Rule 6.2.     Decide    N +  S    iff    W*(X1   =) z   (X.)R(|x.|)   <  k, 

or      > k-,     where    k.   =  k.fa.n). 
-    2' .1 .1 

The statisticfi pinployed in the two decision rijlcs above involve 

statistics which are well-tabulated.  However, these statistics both 

have discrete distributions, and it is necessary to turn to randomized 

procedures if one wishes to achieve certain particular  PFA's, 

One such procedure is based on E-S-N (extraneous statistical noisel, 

i.e.,  Y = (Y , ..., Y )  independent of the data and generated by a 
%    1       n 

known law «^ in  fi(SISl). 

Let Y^, ..., Y  be i.i.d.  N(0,1). This corresponds to data 

Z = [Z(A), Z(2A), ..., Z(nA)]  from a WLP satisfying p(t) HO and 

2 
a A = 1. When the process  {Z(t)} is independent of the data so are 
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the    Y's. 

From Section 4,   one knows   that  the     BDT,     '5(-)j     is   such  that 

Sm  =   [S.CX),  N, (X)],    where    S, (X)   =   [|x|(l),   ...,   |xUn)]     and 

N-(X)  =   [e(XJ,   ...,   e(X );     R(|x,h,   ...,  R(|x   h].     In order to annly 
1 r\j i n 1 n 

the Randomized Noise Tlieorem  (Theorem 4.6),  one  forms     Y'   =   (Y'      ...,  Y')   = 
a. 1 n 

(^"■^[Sj(Y),   N^(X)].     In this  case    Yl   =   [2  e   (X .)-l]| Y. | (RC| X. I)) .     This 

means     N,(X)   =N,(Y')-     By Theorem 4.6,     YI,   ...,  Y*     arei.i.d.     N(0,1) 

under    PN:     *% e fi(SISI).     One useful decision rule based on the Kolraogorov- 

Smirnov statistic  is  then. 

1    " 
Decision Rule 6.5.     Decide    N + S    iff    sup   |-    I   (z  - Y!)   -  $(z)|   > d', 

z'     "     1 ^ 
where    d'   =  d(a,n). 

Again one notes  that  Decision Pule 6.3.     could have employed any 

goodness-of-fit statistic.     (See,   e.g..  Bell   (1964a);  Model   I  Detectors)). 

A different type of detection procedure  is  developed  if one employs 

a different version of the    M-S-N. 

Let    S*     (See Definition 4.1)    be the set of sign-time permutations 
n 

of coordinates of X = (X., ..., X ), and let h(X) = T j X..  Then one 
a. 1 n '^        V .1 

has  the following result. 

Theorem 6.1.     (a)    h(-),    above,  is  a    B-Pitman function wrt    Q(SISI) 

and    S*. '4 
i:, 

(b) R(h(X)),     as   in Definition 4.1,     is     M-S-N. *• 
a. 

(c) Under PN, R(h(X)) 'v^ D - U{l, 2, ..., k*},  i.e., has a discrete 

uniform distribution over the integers  {l, 2, ..., k*}, where 

k* = (n!)(2"). 
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Decision Rule 6.4.  necide N + S iff RfhCX)) £b,  or   ^'^2" 

where b^ = (n!)(2")(|)  and h^ = 1 + (1 - |)[n!)(2"). 

Of course, one could construct an analagous decision rule for 

each  B-Pitman function. 

These decision procedures are illustrated in the appendix. 

The final detection problem of this naper concerns the equality o^ 

two stochastic process laws. 

7• Two-Sample Detectors. 

Tlie detection problem considered here is 

N: <>C^  "   ^2    ^^  N + S:  o?*^ / «^. 

where ^.   r Q(SISI). 

Consider  the situation where     X  =   (X,,   ...,   X  )     is   generated by    o(, 

and    Y =   (Y,,   ...,  Y  )     is  generated by     A^    and  is   independent of    X. 
r^,       ^   1 n 2 % 

Under    PN,     Z =   (X,Y)   =   (X       ...,   X  ;     Y ..,  Y  )   =   (Z ..,   Z  1 
%%'\; 1 ml n 1 IN 

is distributed as a random sample from an (unknown)  !'(•)>  symmetric wrt 0, 

Since no specific value of a parameter (or law) is involved, one needs 

an NPDF statistic.  Such a statistic must be based on some version of 

the M-S-N, e.g.,  S^(Z) = [c(Z^), ..., (Z^^); R( Z^ ),..., «( Z^ )]. 

n 
Decision Rule 7.1.  Decide N + S iff \'i =  \  R(|Z |) >^ b  or  ^b^, 
_ " 1    ^ 

where b. = b.(a,m,n). 

Decision Rule 7.2.  Decide N + S iff 
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sup   I   ^    i   {z  -   |x|(j}]   - i    i   {z  -   |Y|(,i))!   > d-   = dCa,in,n) 
z        '"    1 "    1 

Decision Rule  7.5.     Decide    N +  S    iff 

m n 
-    I V(R|X.|)   - i    I V(R(|Y.|))   >  a^     or      <  a^, 

where V,, .... V  are i.i.d.  $ and independent of the data. 
1      n 

This last decision rule is based on the Theorem 4.6.  (See also, Bell 

and Doksura (1965)).  The first and second rules above correspond to the 

Wilcoxon Rank-Sum statistic, and two-sample Kolmogorov-Smirnov statistic, 

respectively. 

The techniques here, although concerned with ^(SISI) are closely 

related to many of the usual two-sample non-parametric detectors. (See, 

e.g.. Bell (1964a; Model II Detectors)). 

Numerical examples of the decision rules here are given in the 

appendix. We conclude this section with two more detectors. 

(A)  A Modified Two-Sample Detector 

The simplest rank detector (statistic) for the pure noise situation 
N 

of univariate symmetry about zero is: T = \    e (Z.) where  e(y) = 1 
i=l    ^ 

if y > 0 and zero otherwise. Under the null hypothesis of PN, T has 

a Binomial distribution with parameters N and ■=• . However, it is clear 

that for any asymmetric distribution with F(0) = y , the power of any 

test based solely on T is equal to its PFA. 

Let T = k, and define {Z|, ..., Zj^_j^} = {\l^\:     Z^ < 0} and 
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{Z*, ..., Z*} =  {|z.|:  Z. > 0}.  TFiere are now two new samples on which 

one can try any two-sample detection procedure such as the Kolmogorov- 

Smirnov detector, Cramer-von Mises detector, Mann-h^hitney-Wilcoxon 

detector, Fisher-Yates-Terry detector etc.  Each of these tests is a 

most powerful invariant detector against specific N + S alternatives, 

see Lehmann (1959). 

The power of such tests is equal to PFA for S + N situations with 

the Z distribution symmetric about zero.  Tliere is a slight difficulty 

in applying detectors based on comparisons of {-Zl}  and {Z*}  when 

m or n is small.  For this latter reason, one can introduce the 

modification below.  (The development below is a slight extension of 

some ideas in:  Dippo, C. (1970)  Distribution-free tests of univariate 

symmetry about zero. Class Proiect, University of Michigan.) 

Let T(m,n) be an arbitrary two-sample detector with PFA a  and 

critical region C(a;m,n). Then let  i|j(Z) = 1 if T < k  or > k • = 1 
% 1        .2. 

if 1^, £ T ^ k  and T(m,n) e C(a;m,n); and zero otherwise. The 

power of detector if; at F = P{Reject PN|S + N is true}  is 

ipdFj = P{T < kjlFj} + P{T > k^lFj) + 

^^2  . 
^    I      P{T = i} P{T(j,N-i) e C(a;i,N - 1)} 

'^r^ N   .  ., .    N   N   .  ., . 

j=l  ^  '  '    j=k2+l ^ 

^2 N .  „ . 
+ I     C^ P{T(,i,N-j) e C(a;j,N-j)} pj q^"-"" , 
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where p, = P{Z < 0|F^}  and q = 1 - p . 

This procedure eliminates the difficulties when m or n is small, but 

the power is still a = PFA when one has univariate symmetry about zero - 

a desirable property. 

(B) A Chi-Squared Detector 

Under the PN situation, divide the domain of Z.'s into sections 

symmetric about zero by the set of numbers  {a., i = 0, +1,  +2,   ...,  +k}. 

The probability of falling in the interval  (a. ^, a.), i > 1 under the 

PN case is the same as falling in the interval  (-a., -a. ,). The 
11-1 

a.'s may be chosen arbitrarily, be based on some prior knowledge, or, 

better yet, be based on the ordered statistics. 

Let Z,,-, ..,, Z^,,^  be the order statistics of the  {Iz.l}. 
(1)       (N) ' j' 

If the desired number of intervals is k,  let r. = jN/k and a. = Z, ^, 

j = 1, 2, ..,, k. Then 

N 
N-. = y e (Z.)[e(a. - Z.) - e(a. . - Z.)] 
Ij  ^t:i      ^ 1 '  3   1     j-1   i^-* 

N 
N„. = y e (-Z.)[e(a. - Z.) - e(a. , - Z.)]. 

Let N,  = y N, .  and N„ = )" N... Therefore, under the PN 
1-  4^ Ij       2-  '^ 2i 

J 3       - 

situation, the detector 

N. N„  2   „ 

1     3 -^ 1'   2- 

is    DF,    and has  an asymptotic null distribution of a Oii-squared statistic 
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with  (k - 1)  degrees of freedom. 

8.  Point Estimation and Confidence Bounds for V^     with Pf in f^(SISI). 

(A)  Point Estimation 

Recall the definitions of SISI and symmetric (about zero) probability 

laws, that is 

fJCSYM) = {F(-):  F is continuous and F(x) + F(-x) = 1 for all x} 

nCSISI) =    {^.    Y,, ..., Y  are i.i.d. F e fi(SYM)  for all 
1      m 

A > 0, where Y. = Z(jA) - Z((.i - 1)A), Z(0) = O}. 

Example 8.1.  Let X^, X^, .,., X , ...  be i.i.d.  Cauchy with parameter 

9 
2   2 

TT(e  + X ) 
(0,9), C(0,9), that is f(x) =  — ^— »  -oo < x < »; and let 

n 
Z^ = J X^.  Choose  A = 3 and set Y^ = Z^, Y^ = Z^ - Z^, Y^ = Zg - Z^, 

Then, for {Z : m > l},  (a) ^ e n(SISI); and (b) Y,, ..., Y  are 
m   — 1      m 

i.i.d. C(0, 39) which belongs to fi(SYM). 

To estimate F(x*)  for x* > 0, clearly a natural estimator is 

-1  "" 
F(x*) = F (X*) = m   y e (x* - X.). 

If X* < 0, use estimate 1 - F(-x*).  Obviously, 

E{F(x*)} = F(x*),  Var{F(x*)} = ^^^*ni-F(x*31  . F(^*)F(-^*) . 
m m 

and mF(x*) is a Binomial variable with parameters  (m, F(x*)). 
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An optimal estimate for Ffx*)  can be obtained by using only the 

M-S-S,  S(Z) = {|X|(1), .... |x|(m)} or another, easier to handle. 
'^ m 

version of it G*(-), where G*(z) = m   I    e (z - |x|(j)). m m        . , 
.1 = 1 

Lemma 8.1.  (a)  P{|X | _< z} = 2F(z) - 1,  z ^ 0 and zero otherwise, 

(b) E{G*CX*)} = 2Ffx*) - 1; 

(c) Var{G*(x*)}= "^1 - F(x*)][2F(x*) - 1] 
^  -^ m m 

On the basis of the definition of    G*(-")    and the above  lemma,  define 
m 

another estimator of F(x*) as 

^       G*(x*) + I 
F (x*) = ———:^  
m J 

Theorem 8.1.  (a)  E{F (X*)} = F(x*); 

(b) Var{F(x*)}=  [1 - F(x*)U2F(x*) - 1] 
^  ^ m^ / 2m 

fc)  F (x*)  is the UMVU estimator for F(x*). 

fA^     n <r      Var{F(x*)}  _  2F(x*) - 1     1 
(d)  0 £ 2Ffx*1  - 2 

Var F(x*)       ^^^^ ^ 

Thus, one can do better by using the estimator F(x*) which uses the 

symmetry property of the underlying process. 

(B) Confidence Bounds 

In this section the aim is to establish that when one knows the underlying 

distribution function is symmetric about zero, then one can achieve a 
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confidence region having S0%   less interval length  as compared to 

the usual Kolmogorov-Smirnov-type confidence regions.  To nut it in 

another way, it means that with the same con-Pidence level  (1 - allOO% 

of the former confidence interval has half the width than that of the 

latter.  First we state some relevant results which can easily be proved. 

Theorem 8.2.  (a)  For Y , ..., Y  i.i.d.  with  I- c fi(SYMl,  the M-S-S 

is  S(Y) = ||Y|(1), ..., |Y|(m)],  that is the ordered absolute values. 

(b)  |Y.| % G   where 

{2F--(z) - 1,  fc 

0,  otherwise 

-or z > 0 

(c)  F(z) =   J i^^ ^St^^l'   ^^^" 

i [1 - Gj,,(-z)],  z < 0 

Definition 8.1. fi^(Rj = (G: G is continuous, G(0) = O}. 

Theorem 8.3.  F belongs to f2(SYM),  if and only if,  G  is a member 

of the class  S^„(R ) . 

Definition 8.2.  Let d(a,m)  be such that 

a = P {sup |H (Z) - H(z]I > d(a,m)}, 
z 

where    V , V      are    i.i.d.     with  distribution    HfO    which  is 
1 m 

-1     V continuous;   and    H  (z)  =ra        )e(z-V,..). 
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Let Y,, ..., Y  be i.i.d. with F r n(SYM). Then  IYJ, ..., IY  I 

are i.i.d.  with G„ E n_CR,). 
r    i  1 

Lemma 8.2.    The following statement holds: 

P{G*(z)   - d(a,m)  < Gj,(z)  <  G*(z)   + dCa.m)   for all     z}    =  1  - a, 

where    G*(-)     is  the emoirical distribution of the     IYI'S. 
m ■ '   ' 

Lemma 8.5.     (a)    A consequence of the above result and the previous 

development  is  that: 

1  + G*(z)                                            1  + G*   (z) 
p{ _J? _ ^ d(a,m)   <  F(z)  < -y2-— + i d(a,m)   for all     z} 

=  1  - a = P(A ),    say. 

1   -  G*   (y) 1   -  G*(y) 
(b) PCA"")  =  1  - a = P { ^ ^ d(a,m)  < F(y)  < -^  + i- d(a,m) 

for all    y < 0} 

= P(A"),    say. 

(c) PIA"^} = P{A"} = P{A*f\ A"} =  1  - a. 

Definition 8.3.     Let    L*(z)    and    L  (z)    be defined as  follows   m m 

i [1 + G;(Z)]  + ^d(a,m).        z > 0 

L*(z) 
"* ■     1 1 

i [1 - G^C-z)]  + y d(a,m),       z < 0 
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i- [1  -  r,*(-zl]   - 4 d(a,m-),       z  < 0 

Theorem 8.4.     Let    Y, ,   ...,  Y      be     i.i.d.     with     !'(-")     in      f2CSYM)     and  .—_  I ji, 

1     ^ 
G*(z)  = m        I    c  {z  -   |Y|(i)).     Tlien 

"> j = l 

(a) P{L   (z)   <  F(z)   <   L*(z),     for all     z}  =  1   -  a. 

(b) L*(z)   -   L   (z)  =  d(a,inl     for  all     z. 

The above result  combined with  the statement below helps  achieve our 

aim set  in  the  beginning of this  section. 

Theorem 8.5.     Let    V,,   ....   V      be     i.i.d.     with  distribution    H(-)     which  —_ I m 

is  continuous.     Then 

(a) P{H  (z)   - d(a,m)   < n(.z)   < H  (z)   + d(a,m)     for all     z} =  1  - a 

(b) [H  (z)   + d(a,m)]   -   [H  (z)   - d(a,m)]   =  2d(a,m)     for all     z. 

These results  can be presented in a slightly different form when one 

constructs  the following empiric-type distribution -  the empirical 

distribution of data: 

-lY|(m),   -   |Y|(m-   1).   ...,   -   IY|(1);   |YI(1),   ...,   |Yl(m) 

Definition 8.4.     Let    G**(z)    be as below: 
—, _.  jn 

G**Cz)  =   (2ni)'^   [  i     e   (z  -   |Y|(i))   +    f    c   (z  +   |Y|Ci))] 
"• j = l j = l 
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Lemma 8.4. With probability one, 

(a)  G**(z) = T U + [G*(z) - n*(-z)]},  for all  z; and m 

(bl  G**(z) 
m 

m m 

j [1 + f^;(z)].    z 1 0 

i- [1 - fi*(-z)].  z < 0 

Theorem 8.6.     Let    Y^,   ...,  Y      be    i.i.d.     with    F(-)     in      f2(SYM).     ITien, 

P{G**(z)  - jd(a,m)  < F(z)  < n**(z)  + j d(a.m)    for all    z} m 

= 1 - a. 

The results of this section "fit in" well with the idea that in 

constructing PDF (parametric distribution-free) statistics for  S^CSISI) 

one should use only the M-S-S, S(Z) = [|Y|(1), ..., JYlCm)]. To use 

any "additional aspects of the data" should be inefficient. 
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APPENDIX FOR Q(SISI)  FAMILY 

ILLUSTRATIVL: EXAMPLFS AND GF^APHS + 

Example 1.  To illustrate the Goodness-of-fit detection procedure we considered 

the data given by Dewey  (1963).  Tlie graph of the data is shown in Graph 

1(a).  Figure (b)  shows the power spectrum of smoothed U.S.A.  immigration 

data of Dewey.  By taking the period 1830' to  1950 we looked at 

residuals of logarithms of immagration data, a^ter removal of trend by 

a simple seventeen-point moving average - values increased by  2,  see 

Kendall (1976, p. 103).  Let X. denote the jth year residual value 

for the period considered, then set W = X. + ... + X  ,  W^ = X  + ... + X^ ; 

...; W 2 = X   + ... + X  ; here A = 10 and n = 1, 2, ..., 12.  This 

process gives a probability law which belongs to ^(SISI)  but is not 

symmetric about zero.  The aim is to detect: - PN: J\  e i^(SISI)  (with 

symmetry around  18) against N + S: ^5 U.    ,,  U indicates uniform 

distribution.  The ordered W.'s with computations and decision rule are 

presented below. . 

+This Appendix was prepared with the aid of S-M Lee and A. Mason of 
San Diego State University. 

''Dewey, E. R. (1963). The 18-2-year cycle in immigration, U.S.A., 
1820-1962. Foundation for the Study of cycles. Inc., Pittsburgh, 
PA. 
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Table 1:  U.S.A. Immigration Data 1830-1950. 

Ordered Data Computations 

"CJ) 
:   (.1) 

12    40 40     12 

18.5484 
19.1244 
19.1562 
19.1853 
19.3680 
19.5932 
19.8373 
20.4530 
20.7822 
20.8606 
21.0688 
22.0959 

-0.3804 
-0.3114 
-0.2289 
-0.1463 
-0.0675 
0.0102 
0.0874 
0.1553 
0.2304 
0.3118 
0.3899 
0.4476 

0.4637 
0.394 8 
0.3122 
0.2296 
0.1509 
0.0732 
-0.0041 
-0.0720 
-0.1471 
-0.2285 
-0.3066 
-0.3643 

The detection procedure used is the Kolmogorov-Smirnoiy statistic 

D,, = max {max U -    -^ ^    '^ - LzA 
12 

J 

0.4637 

12    40  '  40 12 ]} 

With PFA  a = .01,  the critical value is d^» „„^ = 0.449, see Conovor 

(1971, p.397)- 

Decision Rule:  Decide N + S since D^- -^ '^i2-005" 

Example 2.  (Random Walk). To explain the detection procedures for the 

Class-Fit problem, 30 observations were generated from a Cauchy distribution 
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with location and scale parameters, respectively, zero and 2.  Thus, 

^r ^2' ■■•' ^30 ^^^    i-i-d-  r.  vs.  from C(0,2).  Let  Z(.i) = I    Y , 
k = l 

then     {Zfj)}     is  a stochastic process  with   law  in the  family       n(SISI). 

Choose      A =  3,     and set     X^  =  Z(3),   X^  =  Z(6)   -   Z(3),   ...,   X       = 

Z(30}   -   Z{27).     Clearly,     {Z(il}      forms  a  random walk  and     {X.}     is   a 

sample from it.     For the plot of the data see Graph  2. 

TaRle  2.     [Random Walk  Data 

Data Computations 

Y    =  0.5143              Y       =   -97.8398 

V,.   13.2748              :        -\f^-llll 

:     \^-^         ■       Is."^ 
-6   9749 

87-6275                              ^'^ 
:89:3277          j-«-^,^« 
-90.7272                          :l-\ll\ 
-89.3762                            I'llY 
-90.1488                             i.-""''^^ 
-94  6573                            3.1908 
-91  2300                        -^"-^'^^^ 
-90.6965                        :^l-^^^4 

-96.9435                    ^  _i89902 
Y^^=-98.5349             30         '-^•^''^^ 

X. c(X.) R(  X.   ) 

15.7933 
-103.4208 

-1.7487 
-1.8538 
-7.4049 
59.4836 
41.7548 
-2.7977 

-30.4395 
11.6435 

1 
0 
0 
0 
0 
1 
1 
0 
0 
1 

6 
10 

1 
2 
4 
9 
8 
3 
7 
5 

To detect    PN:   e^ e ^(SISI)     versus   ^^ Q(SISI),     the procedure is 

as  given below. 
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The Sign Detector.     One proceeds  as   follows: 

10 
T*   (X)   =       I    e  (X )   = 4 

10 'v> j.l .1 

P{T*Q<  1 ; n  =   10}  =   1   -  P{T*Q ^1 8;  n =  10}  =  0.0107 

Therefore,  a = 0.0214;     and one decides     N + S,     if and only  if, 

T*   (X)   > 8    or      <   1.     The conclusion is  decide    PN,  with    PFA = a   =   .01 lu %   — — 

The WiIcoxon-Signed-Rank  Detector.     In this  situation one computes 
10 

W* (X) =  I    e (X.) R(|X.I) = 28.  We decide N + S,  if and only if 
1^ %    ^_2    1     .1 

W* (X) > k,  or  < k   where 

k = t(a/2, n) = t(.005,10) = 52 

,   n(n + 1)  ^^ /o  s  , 
2 "^ ""2  ~  ^^^'^'   n) = 3 

("t" denotes "tabulated value" obtained from Hollander and Wolfe (1973)) 

Since W*  is outside the critical region, one decides  PN. 

Nft) 
Example 3.  (Compound Poisson Process).  Let Z(t) =  L    "^■,    where 

.1 = 1 ■' 

{T.} are i.i.d. r. vs.  from double exponential with parameter 4; 

{N(t)}  is homogeneous Poisson process with parameter 0.5;  and  {T.} 

and {N(t)} are independent. Table 3 below gives the generated data 

from this process. The plot for jumps is shown is graph 3. 
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We sample every three units, that is the basic data is 

{Z(3), Z(6), ..., Z(30)}.  Let X^ = Z(3), X^ = Z(6) - Z(3), ..., 

X  = Z(33 - Z(27).  The interest here is to detect  PN:  P\ e  fi(SISI) 

against N + S: ^^ Q,{SISI).     The appropriate detection statistic is the 

Wilcoxon one-sample statistic. The essential computations are as follows: 

Compound Polsson Data 
X. = Z(3.i)- 

j Z(3j) Z[3(i-1)) P( x.h 

1 0.4576 0.4576 5 
2 1.3184 0.8608 8 
3 2.1871 0.8687 9 
4 1.7750 -0.4121 4 
5 2.7044 0.9294 10 
6 3.0626 0.3582 3 
7 3.1917 0.1291 1 
8 2.7303 -0.4614 6 
9 2.4915 -0.2388 2 

10 3.0675 0.5760 7 

12 
Decision Rule.  Since W* = I    £ (X.)R(|X.|) = 43 does not fall in the 

critical region  {W* >_ 52 or W* <_  3} with  PFA a = .01,  we decide PN. 
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Table 3.  Compound Poisson Process Data 

Interarrival Times "Jiimps" Cumulative Jumps 

1.0895 0.1250 0.1250 
0.1005 0.5383 0.66 33 
0.4816 -0.2057 0.4576 
2.4213 -0.0637 0.3939 
1.5793 -0.0065 0.3874 

10.2320 0.9310 1.3184 
2.5747 0.3350 1.6534 
2.3683 0.0680 117214 
0.7450 0.4657 2.1871 
1.9194 -0.1040 2.0831 

4,0348 -0 .2088 1.8743 
0.3678 -0.0993 1.7750 
1.0791 0.0779 1.8529 
4.6253 0.9813 2.8342 
2.5675 -0.1298 2.7044 

6.9561 -0.0153 2.6891 
4.9539 0.1758 2.8649 
0.0201 0.1977 3.0626 
0.0424 0.0324 3,0950 
0.7306 -0.1454 2.9496 

0.1366 0.2421 3.1917 
3.1023 -0.2848 2.9069 
4.0651 -0.2780 2.6289 
0.2947 -0.1014 2.7303 
0.3993 -0.0002 2.7301 

1.2287 -0.3191 2.4110 
7.9266 0.0805 2.4915 
2.3167 0.3073 2.7988 
0.5358 0.0422 2.8410 
0.1195 0.2265 3.0675 
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Example 4  (Wiener-Levy Process).  Let W(t) = y(t) + a W*(t),  where 

{W*(t), t ^ 0}  is a Wiener-[,evy process  (WLP)  satisfying  (i) 

EW*(t) E 0;  (ii)  Cov{W*(s}, W*(t)} = min (s,t);  (iii)   it is Gaussian, 

Let  Z = W(jA),  that is one samples at times  A,  2A, ...,  and 

X = (X  ..., X )  where X = Z. - Z. ,  and Z. = 0.  If  )j(t] = 0, 

the family of such processes is denoted by  ^(IVLPrf));  and if )j(tl = t, 

then it is denoted by  f^flVLPL). 

In this example we illustrate the 2-samplc detection procedure for 

PN:  ^^ = ^2'^  fi(SISI)  against N + S: X, ^  f    ^ ^^     c^. c QCSISI) 

for i = 1, 2. 

For WLPcJ),  wc chose  CiJ,o,A) = (0, 5, O.l)  and generated the first 

set of data  (X, , ..., X ) (m = 15)  as follows: 
1       m 

(1) Generate 30 N(0,1)  observations, 

(i)  Generate  0 , ..., 0   U(0, 2TT) observations, 

2       2 
(ii)  Generate  R , ..., R   Exp. (1/2)  observations. 

(2) Let X*  , = R cos e ,  X* = R sin 9 . 
2m-1   m     m   m   m     m 

(3) X! = SA X* gives  X', ..., X'   i.i.d. r. vs.  from N(0, 25A) . 

(4) X| = Z(A),  X^ = Z(2A) - Z(A), ..., X^^ = Z(30A) - Z(29A) gives 

j 
Z(jA) = \    X.',  i = 1, 2, .. . , 30.  This provides first-sample 

i = l ^ 

(X^, X^, ..., Xj^).  By choosing  (y(t),a,A) = (.3t, 5,A = 0.5), 

we generate similarly the second sample of observations (fromWLPL) which 

is denoted by  (Y^, Y^, ..., Y^^).  Thus the BDT is  Z = (X , ..., X  ; 
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Y. , ..I,  Y^j.).  The probability laws ^or X and Y,  respectively, are denoted 

by  (^      and  <?C,.  'Ilie plots of  {X!}  and  (ZCjA)} for both processes 

are shown in graphs  4 to 7.  Tlie Wi Icoxon Rank-Sum Detector is given 

below; and the Kolmogorov-Smirnov Detector is presented in Table 4. 

(A)  WiIcoxon Rank-Sum Detector.  The data is as given in the first two 

columns of Table 4.  By using {X.} we compute: 

{R(|X.|), j = 1,2, ..., 15} = {1,2,3,4,6,8,10,11,12,14,15,16,17, 18, 2l} 

15 
Detector:  W =  I    R(|X.|) = 158. 

j = l    3 

Using a large sample approximation for m = n = 15, one gets 

W* = W - [n(m + n + l)/2]  ^ .3.09;  W* ^  NC0,1)  asymptotically. 
[mn(m + n + 1)/12] K  >   J        .   < 

Decision Rule:  Since W* < Z -„ = -1.96, we conclude N + S.  —_  ot/2      ' 

The conclusion is still the same if one chooses PFA a = .01. 
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f^^     Two-Sample  Kolmogorov-Sniirnov  Detector  for Wiener  Levy  Data 

Tab 1e 4.     Computations 

Ordered Combined Data:   z|(i) 
(15)"^ 

15 
I    £(z-IX (:i)H15)'7e(z-!Y|(n)l 

|x (j) Y (?) i = 1 

0.0680 1/15 
0.1644 - 2/15 
0.2135 - 3/15 
0.4502 - 4/15 

- 0.499 3/15 
0.6046 

0.7744 
4/15 
3/15 

m = n = 15 

0.9073 
0.9714 

4/15 
3/15 D   = sup  F (z)-G (z) m,n        m^ ^  n^ ^ 

1.1185 - 4/15 z 
1.6135 
1.6879 : 

5/15 
6/15 = 10/15 

_ 1 .6923 5/15 
1.9042 6/15 ^m,n;.025 = 7/15 (PFA = .05) 
2.0984 - 7/15 
2.2764 
2.2999 

- 8/15 
9/15 Vn;.005 = '/''   ^^^^-"1^ 

2.4765 - 10/15 [Critical values are from 
- 2.6325 9/15 Conovor (1971 , v.   399) 
- 2.8479 8/15 

3.285 - 9/15 
- 3.4773 8/15 Decision Rule: 
- 4.0665 7/15 
- 4.3455 6/15 Decide N + S since 
- 4.3518 5/15 
- 6.6080 4/15 D   > d    ,„ (a=.01). 
- 7.2577 3/15 

m,n   m,n;a/2      ^ 

- 8.0898 2/15 
- 8.1427 1/15 

8.5778 0 
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